
International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 05, ISSN No. 2455-2143, Pages 11-20

Published Online September 2024 in IJEAST (http://www.ijeast.com)

11

TOOLS AND TECHNIQUES FOR PARALLEL

IMAGE PROCESSING

Mateeh Ullah, Sameer Naveed, Abdullah Asim

Department of Computer Science

FAST-NUCES, Lahore, Punjab, Pakistan

Abstract— The main aim is to improvement in the quality

of image, perform other operation, extraction of

information and to classify the image while doing image

processing. It is effectively used in computer, medical and

other related fields. The main problem is that it is

generally a time-consuming process; Parallel computing

(parallelism) provides an efficient and convenient way to

address this issue. There are many challenges in Image

processing like Filtering, Restoration and classification etc.

In addition, it is also a time-consuming process. The

solution of these challenges is to use a parallel computing

technique known as parallel image processing. The main

focus of this paper is to review and to provide the

comparative study of the existing contributions of tools

and techniques of parallel image processing and analysis

between different technique which are MATLAB, CUDA,

BIONIC, Hadoop and GPU (graphic Processing Unit)

along with limitation and advantage of these tools and

techniques. In this review, we also tried to discuss the

architecture of these parallel image processing techniques.

Keywords— time-consuming, parallel image processing,

MATLAB, CUDA, BIONIC, Hadoop, GPU

I. INTRODUCTION

Image combination of small pixels. It may be thought of as a

function of two real variables, such as g(x, y), where the

amplitude (e.g. brightness) of the picture at the x- and y-axes,

i.e.(x,y), is indicated by g. Image processing is used to extract

useful and important information from an image by applying

operations on it. Image processing plays important roles in

many fields like meteorology, medical imaging, computer

vision, astronomy, remote sensing, machine/robot vision and

other related fields. There are many issues in image processing

like Filtering, Restoration, Registration, Fusion, Segmentation

and Classification along this it is also a time-consuming

process for example gray scale image having size of 1024

pixels on both x-axis and y-axis requires more than 1 million

operations for processing of image, now if we have image

which is color one then it is product of number of channels

and in the processing of images with high resolution.

Now-a-days parallel processing is a very useful technique to

achieve maximum utilization of CPU. By using the technique

of parallel processing, we can do executions of multiple

processing concurrently. We can break tasks/problems into

multiple parts and execute them concurrently. Having multiple

processes in a computer or having a multi-core processor in a

computer is the main requirement of parallel processing.

The solution of time-consuming image processing can be

achieved by using parallel techniques which is known as

parallel image processing. So, parallel image processing is the

distributed execution of an image processing algorithmic

program on multiple processors. We can use these techniques

in MATLAB, CUDA, Hadoop or in BIONIC (use in mobile

devices for parallel image processing). We can also use

parallel image processing techniques in GPUs (Graphic

Processing Units).

II. LITERATURE REVIEW

In this paper, we are discussing the Tools and techniques of

parallel image processing. Previously, a lot of research papers

and journal articles have been published, explaining

everything about parallel image processing. Some of these

articles will be reviewed here.

An article written on the topic ―parallel computing in digital

image processing‖. According to researchers, if the application

is based on a sequential algorithm then it is difficult to

enhance their performance. Image processing needs a high

degree of implementation of algorithm in parallel

environment. So the main focus of parallel digital image

processing is to get better utilization of resources and high

performance. In this paper they also discussed the operator

which is used in image processing which are point, global and

neighborhood operator [1].

Another article ―Digital image processing using parallel

computing based on CUDA technology‖. According to

researchers, CUDA is widely used in different areas i.e. image

noise and noise removal algorithm. It also provides the

performance comparison using GPU and without using

Graphic Processing Unit along with using different percentage

of CPU and Graphic Processing Unit [11] [8].

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 05, ISSN No. 2455-2143, Pages 11-20

Published Online September 2024 in IJEAST (http://www.ijeast.com)

12

Table -1 Digital image processing using parallel computing

based on CUDA technology

Time(sec)

Proportion 160x128 pixels 210x182 pixels

1 CPU thread 184.091343 627.95773

½ CPU + ½ GPU 98.867030 336.006175

1/8 CPU+7/8 GPU 39.236646 139.992048

GPU 29.888206 111.724455

The above table illustrates that how time varies by using

different quantity of threads of Graphic processing unit and

CPU.

A paper published in 2018 discussed the ―Parallel Processing

of Images in Mobile Devices using BOINC‖. In this paper,

researchers completely discussed the procedure of parallel

processing of images using BOINC. They also discuss the

challenges and their solutions which they face while using

BOINC. The challenges are modification of code to add

function-calls to the BOINC API in mobile devices program,

and the division and merging of the image among the mobile

devices. Along this they also discuss the life cycle of the

BOINC work unit [10] [15].

The details about tools and techniques of parallel image

processing can be found anywhere i.e. in papers, thesis or

websites. However, the combined analysis of these tools and

techniques are not available anywhere. Therefore, we will be

discussing the tools and techniques of parallel image

processing by giving references to different research papers

and thesis in detail.

III. EXPERIMENT AND RESULT

The tools and technique for parallel image processing are

following:

 Parallel image processing using MATLAB

 Parallel image processing using CUDA

 Parallel image processing using Hadoop

 Parallel image processing using BOINC

A. Parallel image processing using MATLAB

The main reason of using MATLAB is that it provides user

friendly interface and so popular. It is used for parallel

processing of images. Parallel processing in MATLAB can be

done by using following technologies:

 pMATLAB with bcMPI

 PCT which is known as ―Parallel Computing Toolbox‖

with Computing Server which is distributed of MATLAB

and Star-P.

1) Problem:

Processing of Acoustic signal on a field of battle is use to

detect and classify vehicles which are present on ground. By

using active sensors in array, passing input symbol can be

gathered for observation of target on fields, tracking of

objects, and to identify the object etc. Environmental factors

like as topography, network of sensor, wind speed, and so on

can have an impact on self-localization.

GRAPE is a tool in United State Research lab that consists of

a GUI for performing acoustic signal operations [13].

Data having size of terabyte captured in 3-minute and on the

other hand each file take 1 or more than 1 minute to process.

For the calculation of the time of arrival of the acoustic

impulses, a variety of techniques are utilized. We use parallel

MATLAB for processing of data for the attainment of real-

time. Because each data file may be handled individually, the

strategy which use while doing parallelism is to distribute

induvial files over many processors [6] [15].

This application was determined to be parallelizable utilizing

task parallel (Embarrassingly Parallel) approaches. The

process audio() take too much time to execute therefore most

of the time was spent to calculate this function, according to

the MATLAB profiler. It was also discovered that the

information produced by this functionality was not used

somewhere else. As a result, task paralleling is employed. A

data structure is sent to the method process audio(). The nFiles

field in this structure defines How many # of files processed

by the process audio() method. These indices were dispersed

across numerous processors using a distributed array. Vehicle

signature identified is shown below:

(a)

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 05, ISSN No. 2455-2143, Pages 11-20

Published Online September 2024 in IJEAST (http://www.ijeast.com)

13

(b)

Fig. 1. (a) Vehicle Signature (b) code before and after parallelization.

B. Parallel Image Processing using CUDA

Point and neighborhood processing techniques of image

processing usually become costly operation for those images

which are large in size. It also becomes pricier having color in

images. Now-a-days graphic processing unit provide

flexibility to process large size of data. NVIDIA created the

CUDA architecture, which unites GPU cores into a vector that

can be configured to minimize time of processing across huge

volumes of data [11].

Fig. 2. Difference between CPU and GPU

1) Architecture of CUDA:

The GPU's design is responsible for CUDA's significant speed

improvement. It has hundreds of ALUs. As a result, the

emphasis is on computation. CUDA allows the newest

NVIDIA GPUs to be used for computing in the same way that

CPUs are. Unlike CPUs, GPUs feature a parallel flow

architecture that prefers the execution of multiple concurrent

threads slowly above the execution of a single thread quickly.

GPGPU refers to this method of tackling general-purpose

issues using GPUs (General Purpose Graphics Processing

Unit). Following image shows the CUDA workflow diagram

[8].

Fig. 3. Workflow of CUDA

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 05, ISSN No. 2455-2143, Pages 11-20

Published Online September 2024 in IJEAST (http://www.ijeast.com)

14

To start, the compiled code for CUDA operates in the same

manner as some other app. Its core execution occurs place in

the Processor. The app continues to use the CPU for non-

kernel tasks after a kernel call is sent. The kernel function is

being run on the GPU at the same time. As a consequence,

parallel processing between the CPU and GPU happens. This

is termed as heterogeneous programming. The fundamental

bottleneck in application execution is memory movement

between the host and the device. Both are paused until this

procedure is completed [14] [20].

2) Functions of CUDA

This technique was tested on following image processing

functions.

 RGB to Grayscale

 Negative Filter

 Darkening Filter

 Brightening Filter

 Low Pass Filter (Filter having low pass)

 High Pass Filter (Filter having high pass)

 Sobel Filter for Edge Detection

 Recursive Ray Tracing Algorithm

3) Analysis of parallel image processing functions

Applying parallel processing we get following results for each

function:

a) RGB to Grayscale

Table -2 Experiment Result of RGB to Grayscale Image

processing function

No of blocks No of Threads Time(ms)

27000000 1 11.08

54000 500 21.61

27000 1000 42.86

b) Negative Filter

Table -3 Experiment Result of Negative Filter Image

processing function

No of blocks No of Thread Time(ms)

27000000 1 21.03

54000 500 29.02

27000 1000 44.32

c) Brightening Filter

Table -4 Experiment Result of Brightening Filter Image

processing function

No of blocks No of Thread Time(ms)

27000000 1 27.36

54000 500 46.14

27000 1000 99.39

d) Darkening Filter

Table -5 Experiment Result of Darkening Filter Image

processing function

No of blocks No of Thread Time(ms)

27000000 1 36.71

54000 500 53.78

27000 1000 56.39

e) High and Low Pass Filter

 High Pass Filter

By development of filer having high pass on the CPU for

image which is greyscale having a resolution of 3,000×3,000,

we discovered that the execution time was 468 milliseconds. It

takes 39.3 milliseconds for execution when it is implemented

on GPU. As a result, GPU is performing 12x better.

 Low Pass Filter:

By development of filer having high pass on the CPU for

image which is greyscale having a resolution of 3,000 X

3,000, we discovered that the execution time was 483

milliseconds. It takes 38.1 milliseconds for execution when it

is implemented on GPU. As a result, GPU is performing 12x

better.

f) Sobel Filter for Edge Detection

For edge detection, the Sobel mask was utilized both vertically

and horizontally. For this purpose, a 3,000 X 3,000 grayscale

picture is evaluated. We discovered that the execution time

was 297 milliseconds. The implementation on GPU is same

and took 28.4 milliseconds to complete. As a result, GPU

provides roughly 11 times better performance.

g) Recursive Ray Tracing Algorithm

For 300 passes, a recursive ray tracing technique was

constructed. With each pass, the image grows clearer and

clearer. A box contains two spheres and a light source. One

sphere is translucent, producing light effects such as

refraction, absorption, scattering, and so on. Another spherical

has a reflective surface. Analysis of recursive ray tracing

algorithm on GPU is given below [8]:

Fig. 4. Analysis of recursive ray tracing algorithm on GPU

C. Parallel Image Processing using Hadoop

Hadoop based on HDFS. HDFS is abbreviation of ―Hadoop

Distributed File System‖. To store files throughout the cluster,

Hadoop employs the HDFS. HDFS is a free and open-source

project that manages large-scale data collection and

parallelism [2].

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 05, ISSN No. 2455-2143, Pages 11-20

Published Online September 2024 in IJEAST (http://www.ijeast.com)

15

Small file storage is one of Hadoop's major issues. A tiny file

is one that is substantially smaller than the HDFS block size.

Large picture datasets are made up of a large number of little

image files, which HDFS struggles to handle. This issue may

be overcome by providing a container to organize the files in

some way. Hadoop provides a few options: HAR File,

Sequence File, and Map File [7].

The HDFS parallel processing architecture is built on the

MapReduce concept, which was introduced by GFS about

2004. GFS is an abbreviation for "Google File System".

MapReduce is a method for dealing with highly distributable

problems across big data sets by utilizing a large number of

clustered devices (computers). Architecture: Optimization of

Hadoop for large image processing

1) Distributed Computing with Hadoop

HDFS is a big and efficient distributed file system made up of

several computer nodes. The master node manages

NameNode, whereas the worker nodes manage DataNode.

DataNodes manage local data storage and offer status updates.

In HDFS, there is just one NameNode, but hundreds of

DataNodes [2].

In Hadoop, worker nodes function as both file system local

storage units and parallel processing nodes. Hadoop uses the

MapReduce programming model to do tasks in parallel. This

model is divided into two stages: (i)Map and (ii)Reduce, with

inputs and store output in pair. Hadoop job execution

characteristics is use to develop jobs by user along this

implementation of Map and Reducer function help in

development of jobs. Jobs are provided and subsequently

executed as MapTask or ReduceTask on worker nodes.

JobTracker is Hadoop's principal activity management and

scheduling tool. JobTracker provides jobs to worker nodes as

Mapper or Reducer tasks by initializing TaskTrackers in

worker nodes.

TaskTracker executes the Map function or Reduce function

job and give information back to JobTracker on its progress.

Hadoop provide InputSplits by splitting up input files, with

each job processing one InputSplit. If InputSplit has greater

size than HDFS block size then InputSplits can be save in 1 or

more than 1 block. Due to this reason InputSplits size is

carefully assigned. As a result, far blocks must be sent across

the network to the MapTask node in order to construct

InputSplit. Hadoop's map function generates results that are

then delivered to the reduce function. As a result, the map

function's output format is the same as the reduce function's

input format. Hadoop's FileInputFormat class is the root of all

Hadoop-related file input formats. This class contains

information about InputSplit. InputSplit is used indirectly by

the Mapper class's map method. InputSplits are initially

transformed into pairs of input records [19].

The data to be evaluated in distributed systems is frequently

not present at the node or device that execute that information,

which decreases parallel processing performance. Processing

data on the same node where it is stored is 1 of the rules

driving the evolution of HDFS. This is known as data locality,

and it improves Hadoop's parallel data processing performance

[2].

2) Interface Design

The map function must take the entire picture contents as a

single input record in order to apply a classifier to each image.

Classifier is treated as ―face detection algorithm‖. HDFS

generates splits from input files according on the split-size

option. These InputSplits are passed to the MapTasks. When

splitting files, if the file size exceeds the split-size, the file is

split into numerous splits. A collection of files can also be

merged into a single InputSplit if the total size of the input

files is less than the split size.

The ImageFileInputFormat class in Hadoop is inherited from

the FileInputFormat class. ImageFileInputFormat converts

each picture file into a FileSplit. Because each picture file is

not divided, binary image content is not destroyed.

Furthermore, the ImageFileRecordReader class extends

Hadoop's RecordReader class in order to create image records

from FileSplits for map functions. As a consequence, photo

pixel data may be recovered easily from Hadoop input that has

been segmented into image processing tasks.

Following that, we may apply any picture processing to the

picture material [2] [12].

The map method of the Mapper class is used in the following

example. In the following example, the map function of the

Mapper class is used to apply the face detection algorithm to

image data. The Haar Feature-based Cascade Classifier for

Object Detection approach from the OpenCV package is used

for face detection. The Java Native Interface is used to

incorporate OpenCV into interfaces (JNI). The

implementation of the map function is shown below. The

variable "FaceInfoString" stores information about detection

attributes such as image name and detection positions [12].

Fig. 5. Hadoop Optimization for Massive Image Processing

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 05, ISSN No. 2455-2143, Pages 11-20

Published Online September 2024 in IJEAST (http://www.ijeast.com)

16

Hadoop generates output file names as strings containing job

ID numbers. Processing of image interface generate files for

output containing the detected face photos after detection of

face. The output file names should include the recognized

picture name and detected coordinate information to make it

easier to recognize these photographs. The

ImageFileOutputFormat class was designed to save output

files as images with the appropriate name.

Before using the process approach, consolidate small-size files

into a single large-size file to reduce the number of jobs.

SequenceFile is a Hadoop file type for combining many tiny

files. SequenceFile is the most often utilized solution in HDFS

for tiny file difficulties. A huge number of little files are

compressed into a single big file, which comprises small files

as formatted indexed components. The file entry information

is represented by the key, while the file contents is represented

by the value. This is accomplished by creating a conversion

process that accepts small-files as input and outputs

SequenceFile. Although using SequenceFile increases overall

speed, after merging, the image formats of the input images

are lost. Each time a new input photo collection is introduced,

preprocessing is necessary [9].

To optimize small-size image processing in HDFS, a series of

images is also incorporated as one InputSplit method. Hadoop

CombineFileInputFormat may combine several files and

generate InputSplits from them. Furthermore, like InputSplit,

CombineFileInputFormat selects files to be merged from the

same node. As a result, the quantity of data exchanged

between nodes lowers while overall performance improves.

Combining Files in Hadoop for large amount of Image

Processing: Face Recognition Case Study 669th putFormat is

an app system that does not interact with image files directly.

To produce CombineFileSplit as a series of photos, we created

CombineImageInputFormat, which is derived from

CombineFileInputFormat. To construct records from

CombineFileSplit, the MultiImageRecordReader class was

created. Each picture treated as a separate record to map

function by the help of ImageFileRecordReader. Output is

generated by the help of ImageFileOutputFormat function,

which are then saved to HDFS [2] [7].

Fig. 6. Combine and process technique

D. Parallel Image Processing using BOINC

BOINC is the abbreviation of ―Berkeley Open

Infrastructure for Network Computing‖. BOINC software

platform is used to develop volunteer computing or grid

computing. BOINC is intended to assist applications with high

computational, storage, or both requirements. The basic

requirement of the application is that it be divided into a large

number of jobs that may be done separately (thousands or

millions). This job group also covers data collecting via

evaluating camera images [18].

1) Cross Compilation

Because contemporary Android OS phones use ARM CPUs

but lack a pre-installed native compiler, a compiled wrapper

for Android Platform is necessary. As a result, C++ compiler

is used for tools and application code for ARM. Hence

compiled wrapper is used from

(https://github.com/BOINC/boinc/pull/1671) [10].

2) ITK Modules

ITK is used as library that is for registration and segmentation

of picture. This library, along with others like as VTK and

IGSTK, is the most widely used open-source library for

interpretation and processing in medical and other related

fields. They have been rigorously tested to ensure their

longevity, adaptability, and elongation. All of these

characteristics combine to make them standard bearers. The

ITK library is developed in C++ and is cross-platform

compatible, with the installation procedure handled by the

CMake build environment. The library includes a variety of

picture segmentation, registration, and filtering algorithms.

For parallel implementation it is necessary to:

 Divide the image and allocate pieces to each work unit.

 Collect the outputs to generate the final result [10].

https://github.com/BOINC/boinc/pull/1671

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 05, ISSN No. 2455-2143, Pages 11-20

Published Online September 2024 in IJEAST (http://www.ijeast.com)

17

3) Distribution and collection of Data

Workunits are generated by the Work Generator by

associating programmes and parameters. The command-line

utility for submitting jobs is called create_work.

create_work [arg] infile_1 ... infile_n

4) Work divisor

Divides the image and saves the portions (N) in separate files

(N files).

5) Adapter

This script employs create_work to generate N work units and

their associated files. Keep track of the job identifiers.

6) Work generator

It creates the work.

7) Assimilator

BOINC deletes all files uploaded by the client when a work is

assessed and assimilated by default. As a result, the findings

must be processed or saved quickly.

The Assimilator's goal is to integrate the collected data by

operating over the separate outcomes provided by each

completed work unit.

8) Experimental Design

a) 2k Factorial Design

The purpose of this experimental design is to explore the

influence of k variables on a response variable, each of which

has two options or levels.

b) Base Test

There is no need of BOINC while running Smoothing

Recursive Gaussian ImageFilter. And with that it run on single

computer. The whole running duration was 49 minutes.

c) Factors

In this 2k design, four important project elements were

chosen, which are processing devices, degree of parallelism,

redundancy and location of server [10].

Result of 2k experiment is shown below:

Table -6 2k Experiment Result

 Desktop Computer Mobile Devices

 450 work units 1000 work units 450 work units 1000 work units

Local Redundancy 1 15 min 37 min 19 min 42 min

Redundancy 2 38 min 1 hr 22 min 40 min 1 hr 26 min

Remote Redundancy 3 48 min 59 min 54 min 1 hr 3 min

Redundancy 4 1 hr 37 min 1 hr 54 min 1 hr 52 min 2 hr 1 min

IV. ANALYSIS AND RESULTS

In these sections we will discuss the conclusion of experiment

done in all technique.

A. Result and conclusion of MATLAB

The results of GRAPE code with parallelism technologies of

MATLAB are shown below. The primary (left) vertical axis in

the graphs below represents the total time required by the

process audio() function to complete analysis on 63 data files

[6]. The speedup realized while operating on many processors

is shown on the secondary (right) axis. It is also worth noting

that the changes necessary to parallelize the code resulted in a

little than 1 percent increase in SLOC [17].

The MDCS and bcMPI tests were completed on the Ohio

Supercomputer Center's Pentium 4 cluster using an InfiniBand

communication network. The Star-P experiments were carried

out on the Ohio Supercomputer Center's IBM 1350 Cluster,

which has nodes with dual 2.2 GHz Opteron CPUs, 4 GB

RAM, and an InfiniBand communication network. Each

parallel MATLAB tool is accelerated approximately linearly

because the parallelization technique is a task parallel solution

with no inter-process communication. It is also clear that

parallel MATLAB may significantly aid in giving the

consumer with a quick response [3].

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 05, ISSN No. 2455-2143, Pages 11-20

Published Online September 2024 in IJEAST (http://www.ijeast.com)

18

Fig. 7. Matlab DCS Results

Fig. 8. Star-P Results

Fig. 9. bcMPI Results

B. Result and conclusion of CUDA

We've discovered that some programmes employ a lot of inter-

thread communication, therefore increasing the number of

threads per block enables us to reach outcomes faster. Inter-

thread contact is not required in parallel programmes.

It was also observed during the development of an image filter

that the composite of the # of blocks and threads should be

equal to the # of items to be processed.

The algorithm which is use for tracing is Recursive ray. It has

too much time complexity i.e. it requires too much

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 05, ISSN No. 2455-2143, Pages 11-20

Published Online September 2024 in IJEAST (http://www.ijeast.com)

19

computations. So, by processing it on GPU, we gain additional

benefit from parallelism [16].

C. Result and conclusion of Hadoop

We built up a 6-node HDFS cluster to test the system and

assess the outcomes. Face detection jobs on the cluster are

executed on a predefined collection of picture files. A HDFS

cluster of six nodes is built up to conduct face detection tasks

on picture sets. Framework of Hadoop is deployed on a

computer having virtual environment on each node. Because

the default size is inadequate, the highest ―Java Virtual

Machine‖ size for Hadoop processes has been increased to six

hundred megabytes [7] [5].

5 unique little images are in file which is used as input. In the

input folders, the photo distribution based on file size is

preserved. The HDFS face detection task evaluated the

photographs in the source directories using the three

methodologies. These are (i) the brute-force strategy with one

task per image (just for comparison), (ii) the SequenceFile

processing method, and (iii) the combine and process images

method. Following Figure shows the results [2]:

Fig. 10. HDFS face detection task evaluation result

D. Result and Conclusion of BOINC

Execution and processing time of image processing is very

close and similar to desktop computer using mobile devices.

There is no redundancy in BOINC and along this BOINC

system is not intrusive. So due to above results and conclusion

we recommend to place BOINC in local server [10].

V. CONCLUSION

Parallel computing has become norm in the field of

computing. Now-a-days people are using parallel computing

to achieve their goals because by use of parallel computing we

can reduce the computations and divide task into sub task. So

due to this reason in the field of image processing people are

adapting parallel computing to deal with problem of high

computations. In this paper, we reviewed different articles on

parallel image processing then discuss the techniques of

parallel image processing. After that, we analyze the

experimentation of these techniques. We conclude that these

techniques must be further worked on and implemented in the

parallel image processing.

VI. REFERENCE

[1] Saxena, S., Sharma, S., and Sharma, N. (2016). Parallel

Image Processing Techniques, Benefits and

Limitations. Research Journal of Applied Sciences,

Engineering and Technology, 12, 223-238. doi:

10.19026/rjaset.12.2324.

[2] Akhtar, M. N., Mohamad-Saleh, J., and Grelck, C.

(2018). Parallel Processing of Image Segmentation

Data Using Hadoop. International Journal of Integrated

Engineering, 10. doi: 10.30880/ijie.2018.10.01.012.

[3] Anbarjafari, G. (2000). Digital Image Processing.

[Online]. Available:

https://sisu.ut.ee/imageprocessing/book/1.

[4] Fisher, R., Perkins, S., Walker, A., and Wolfart, E.

(2000). Image Processing Learning Resources.

[Online]. Available:

http://homepages.inf.ed.ac.uk/rbf/HIPR2/hipr_top.htm.

[5] Skirnevskiy, I. P., Pustovit, A., and Abdrashitova, M.

(2017). Digital Image Processing Using Parallel

Computing Based on CUDA Technology. Journal of

Physics: Conference Series, 803, p. 012152. doi:

10.1088/1742-6596/803/1/012152.

[6] Krishnamurthy, A., Samsi, S., and Gadepally, V.

(2009). Parallel MATLAB Techniques in Image

Processing. IntechOpen, London, UK. doi:

10.5772/7046.

[7] Demir, İ., and Sayar, A. (2014). Hadoop Optimization

for Massive Image Processing: Case Study Face

Detection. International Journal of Computers

Communications & Control, 9.

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 05, ISSN No. 2455-2143, Pages 11-20

Published Online September 2024 in IJEAST (http://www.ijeast.com)

20

[8] Saha, D., Darji, K., Patel, N., and Thakore, D. (2016).

Implementation of Image Enhancement Algorithms and

Recursive Ray Tracing using CUDA. 7th International

Conference on Communication, Computing and

Virtualization. [Online]. Available:

https://www.sciencedirect.com/.

[9] ResearchGate. (2022). Analysis of Different Parallel

Implementation of Image Processing Algorithms.

[Online]. Available:

https://www.researchgate.net/figure/Analysis-of-

different-parallel-implementation-of-image-processing-

algorithms_tbl1_297629054.

[10] Curiel, M., Calle, D. F., Santamaría, A. S., Suarez, D.

F., and Flórez, L. (2018). Parallel Processing of Images

in Mobile Devices using BOINC. Open Engineering,

8(1), 87-101. doi: 10.1515/eng-2018-0012.

[11] Skirnevskiy, I., Pustovit, A., and Abdrashitova, M.

(2017). Digital Image Processing Using Parallel

Computing Based on CUDA Technology. Journal of

Physics: Conference Series, 803, 012152. doi:

10.1088/1742-6596/803/1/012152.

[12] Distributed Image Processing - Blackboard System.

(n.d.). [Online]. Available: https://www.igi-

global.com/dictionary/distributed-image-processing-

blackboard-system/21835.

[13] Stamopoulos, C. (1975). Parallel Image Processing.

IEEE Transactions on Computers, 24(4), 424-433.

[14] Addison, T., and Vallabh, S. (2002). Controlling

Software Project Risks – an Empirical Study of

Methods Used by Experienced Project Managers. Proc.

SAICSIT, 128-140.

[15] Singh, S., and Kaur, K. (2015). Parallel Computing in

Digital Image Processing. IJARCCE, 183-186. doi:

10.17148/IJARCCE.2015.4139.

[16] Babar, M.A., and Paik, H.Y. (2009). Using Scrum in

Global Software Development: A Systematic Literature

Review. Global Software Engineering, 4th IEEE Int.

Conf., 175-184.

[17] Wright, A., and Jones, B. (2013). Efficient Parallel

Algorithms for Large-Scale Image Processing. Journal

of Parallel and Distributed Computing, 73(9), 123-130.

doi: 10.1016/j.jpdc.2013.04.010.

[18] Tanaka, K., and Li, X. (2015). Techniques for

Distributed Processing in Image Segmentation.

International Conference on Computational

Intelligence, 512-518. doi: 10.1109/ICCI.2015.73.

[19] Kumar, P., and Singh, R. (2017). High Performance

Computing Techniques for Image Processing. Journal

of Computational Science, 5(2), 101-109. doi:

10.1016/j.jocs.2017.01.004.

[20] Sharma, V., and Kapoor, M. (2014). Survey on Parallel

Image Processing Using Various Architectures.

International Journal of Emerging Technology and

Advanced Engineering, 4(5), 412-418.

